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1.1 INTRODUCTION

UNCERTAINTY

Uncertainties arise from many sources:
J Random effects

J Measurement errors

J Modeling choices

. Parameter choices

J Inference processes
[ Decision making
 lack of knowledge
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1.1 INTRODUCTION

UNCERTAINTY TYPES

Three types of uncertainty are now recognized in the five theories:
J Nonspecificity (or imprecision)

which is connected with sizes (cardinalities) of relevant sets of alternatives.
J Fuzziness (or vagueness),
which results from imprecise boundaries of fuzzy sets.

J Strife (or discord)
which expresses conflicts among the various sets of
alternatives.
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1.1 INTRODUCTION

Crisp Sets versus Fuzzy Sets

* The crisp set is defined in such a way as to dichotomize
the individuals in some given universe of discourse into
two groups: members (those that certainly belong in the
set) and nonmembers (those that certainly, do not).

* A fuzzy set can be defined mathematically by assigning
to each possible individual in the universe of discourse a
value representing its grade of membership in the fuzzy
set.
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1.1 INTRODUCTION

FROM CRISP SETS TO FUZZY SETS

= Probability theory is capable of representing only one of
several distinct types of uncertainty.

= When A is a fuzzy set and x Is a relevant object, the
proposition “X iIs a member of A" iIs not necessarily either
true or false. It may be true only to some degree , the
degree to which x is actually a member of A.
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1.2 CRISP SETS: AN OVERVIEW

The theory of crisp set
“ The following general symbols are employed throughout the text:

Z={..,—2,-1,0,1, 2, ...} (the set of all integers),

N ={1,2,3,...} (the set of all positive integers or natural numbers),

Ny = {0, 1, 2,...} (the set of all nonnegative integers),

Moo= L 2y A,

Nos = {0, 1,...,7},

R: the set of all real numbers,

R*: the set of all nonnegative real numbers,

[a, b], (a, b], [a, b), (a, b): closed, left-open, right-open, open interval of real numbers
between a and b, respectively,

(X1, X2, . .., Xp): Ordered n-tuple of elements xy, x3, ...,X,.
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1.2 CRISP SETS: AN OVERVIEW

Three basic methods to define sets:

* The list method: a set is defined by naming all its members.
A={a,a,,..,a,}

* The rule method: a set is defined by a property satisfied by its members.

A={x|P(x)}

where [ denotes the phrase “such that”
P(X): a proposition of the form “X has the property P ”

* A set is defined by a characteristic function.

(x) = 1 forxe A
2870 for x e A

the characteristic function Y, X —{0,1}
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1.2 CRISP SETS: AN OVERVIEW

The union of sets A and B:

AuB={x|xe Aor xe B}

The generalized union operation: for a family of sets,

UA ={x|xe A forsomeiel}

el

The intersection of sets A and B:

ANB={x|xe Aand x € B}

The generalized intersection operation: for a family of sets,

NA={x|xeAforalliel}

YY/3/Y )Y
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1.2 CRISP SETS: AN OVERVIEW

TABLE 1.1 FUNDAMENTAL PROPERTIES
OF CRISP SET OPERATIONS

YY/4/Y Y

Involution
Commutativity

Associativity
Distributivity
Idempotence

Absorption

Absorption by X and &
Identity

Law of contradiction
ILaw of excluded middle

De Norgan's laws

A=A
AUB =BUA
ANB=BNA
(AUBYUC==AU(IBFBUOC)
(ANBNC =AN@ENC)
ANBUO =ANBULANOC)
AUBNO) =AUBINAUDO)
AUA=A
ANA=A
AUANB)=A
AN(AUB)=A

AUX =X
AN =
AU S =

ANX =A
ANA=C
AUA =X
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.2 CRISP SETS: AN OVERVIEW

Let R denote a set of real number.

“ If there is a real number I such that X< I for every Xe R, then I is called an upper bound
of R, and R is bounded above by r.

“ If there is a real number S such that X =S for everyx e R , then S is called an lower bound of
R, and R is bounded below by S.

For any set of real numbers R that is bounded above, a real number I is called the supremum
of R (write I = sup R) iff

(a) r'is an upper bound of R;

(b) no number less than I is an upper bound of R.

For any set of real numbers R that is bounded below, a real number S is called the infimum of
R (write S = inf R) iff

(a) Sis an lower bound of R;

(b) no number greater than S is an lower bound of R.
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1.3 FUZZY SETS: BASIC TYPES

A membership function:

* A characteristic function: the values assigned to the elements of the universal set fall
within a specified range and indicate the membership grade of these elements in the set.

" Larger values denote higher degrees of set membership.

A set defined by membership functions is a fuzzy set.

The most commonly used range of values of membership functions is the unit interval [O,1].
We think the universal set X is always a crisp set.

Notation:

* The membership function of a fuzzy set A is denoted by #» :
Ly X —>[0]]

* In the other one, the function is denoted by A and has the same form
A: X —>[0]]

AAVAVARRRY DR.MOHAMMED JASIM 13



1.3 FUZZY SETS: BASIC TYPES

A(x) An(X)
et . Sl

| |
O o
0 1 2 3 2 X
A A
B e D Y e ke R = = e ey e
Asz(x) Ay(x)
o ST
0 ! | | - (8] } 1 |
O 1 2 3 4 X 0 1 2 3 4 X

Figure 1.2 Examples of membership functions that may be nsed in different contexts for
characterizing fuzzy sets of real numbers close to 2.

YY/4/Y )Y DR.MOHAMMED JASIM 14



1.3 FUZZY SETS: BASIC TYPES

The four fuzzy sets are similar in the sense that the following properties are
possessed by each A;{i € MNy):

(1) A;(2)=1and A;(x) < 1 forall x #2; |
(i) A; is symmetric with respect to x = 2, that is A; (2 +x) = A;(2 ~ X) forall x e R;
(iif) A;(x) decreases monotonically from 1 to 0 with the increasing diference |2 — x|.

Each function in Fig. 1.2 is a member of a parameterized family of functions.

pix —r)+1 whenx e[r—1/p,r]
Aix) =4 p1(r—x)+1 whenxe[r,r+1/p]
0 otherwise

1
14+ p(x -—.?")1

As(x) = g=lpslx=r)|

Axlx) =

oy - (1 +cos(pym(x —r)))/2 whenx e [r—1/ps,7r+1/p4]
. |0 otherwise

AAVAVARRRY DR.MOHAMMED JASIM 15



| 1.3 FUZZY SETS: BASIC TYPES

An example:

= Define the seven levels of education:

YY/4/Y Y

0 - no education

1 — elementary school
2 - high school

3 — two-year college degree

7

/ ;:
/
Vi

4 - bachelor’s degree
5 — master’s degree
6 — doctoral degree

Mcnbership
-— v
I
/
\

aw
\

A

~s

1 2 3
Educational level

! L/q
0 / —
0

|
>
4

i
5

Cale

Figure 1.3 Examples of fuzzy sets expressing the corncepts of people that are little educated

(o), highly educated (), and very highly educated ((J).
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1.3 FUZLZY SETS: BASIC TYPES

Several fuzzy sets representing linguistic (Value) concepts such as low, medium, high, and so one
are often employed to define states of a variable. Such a variable is usually called a fuzzy

variable.

For example:

YY/3/Y )Y

Very low Low Mediam High Very high
A ¢ l, |
Y
1
=
2
S
=
=
=
=
O T
T, Temperature, °C T,
(a)
Very low Low Medium High Very high
E i 3 i P, i i i YN
BB Al A A A A
T, Temperature, °C T,
(b)

Figure 1.4 Temperature in the range {77, 72] conceived as: (a) a fuzzy variable; (b) a traditional
(crisp) variable.
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| 1.3 FUZZY SETS: MEMBERSHIP FUNCTIONS (MFS)

* Characteristics of MFs:

o Subjective measures

° Not probability functions  )MFs 1 /

Hl’ﬂll“ in the Norway

. 5 ............................................... \
| ‘tall” in NBA

178 cm Heights




1.3 FUZZY SETS: MEMBERSHIP FUNCTIONS (MFS)

« Formal definition:

A fuzzy set A In X is expressed as a set of ordered
pairs:

A= x, gt (X)) x € X§

MEIﬂbﬂ}'F-lllP X: Umiverse or
function universe of discourse

(MF)

Fuzzy set

4 fuzzy set 1s totally characterized by a
membership function (MF).
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1.3 FUZZY SETS: FUZZY SETS WITH DISCRETE UNIVERSES

- Fuzzy set C = “desirable city to live in”

X = {Baghdad, Basra, Erbil} (discrete and non-ordered)
C = {(Baghdad, 0.1), (Basra, 0.8), (Erbil, 0.9)}

« Fuzzy set A = "sensible number of children in a family”
X={0,1, 2, 3, 4,5, 6} (discrete ordered universe)
A={(0,.1), (1, .3),(2,.7), (3, 1), (4, .6), (5, .2), (6, .1)}
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1.3 FUZZY SETS: FUZZY SETS WITH DISCRETE UNIVERSES

Membershigrades

;
n K
0.6
0.4
0.2

0

-

2 4
X = Number of Children

A={(0, .1), (1, .3), (2, .7), (3, 1), (4, .6), (5, .2), (6, .1)}
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1.3 FUZZY SETS: FUZZY SETS WITH CONT. UNIVERSES

Fuzzy set B = “"about 50 years old”
X = Set of positive real numbers (continuous)

B = 1(X, ks(x)) [ x In X}

1 5

.-'{"IIE';:T}: ) _ 3 ,.%'
( x — 50 a

1+ | | 5

v 10 8
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1.3 FUZZY SETS: ALTERNATIVE NOTATION

« A fuzzy set A can be alternatively denoted as follows:

A= (L (x.)/ x,
X is discrete IZ> ZE; A(x;) 1 x;
X is continuous HE, > A= j py(x)/ x

Note that Y and integral signs stand for the wunion of
membership grades; “/” stands for a marker and does not imply
division.
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1.3 FUZZY SETS: ALTERNATIVE NOTATION

« Examples:

A = {(0,0.1),(1,0.3), (2,0.7),(3,1), (4,0.7), (5,0.3), (6,0.1) }.

A 1s discrete
A=0.1/0+0.3/1+0.7/2+1.0/3 + 0.7/4 + 0.3/5 + 0.1/86,

C = {(San Francisco, 0.9), (Boston, (.8), (Los Angeles, 0.6)}.

C is discrete -:>

C = 0.9/San Francisco + 0.8 /Boston + 0.6 /Los Angeles,

B = “about 50 years old” npl(x) =

1
B = {(z,pp(x)lr € X}, 1+ (E_fD'iQ)I-

B is continuous -:>

1
B = — Ep —/:-:,
B+ 1+|:::_“?_ﬂ_:|4

YY/A/Y VY DR.MOHAMMED JASIM
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1.3 FUZZY SETS: MEMBERSHIP FUNCTIONS?

« Subjective evaluation: The shape of the functions Is
defined by specialists

« Ad-hoc: choose a simple function that is suitable to solve
the problem

 Distributions, probabilities: information extracted from
measurements

- Adaptation: testing

« Automatic: algorithms used to define functions from data

¥/ Y DR.MOHAMMED JASI M



1.3 FUZZY SETS: MEMBERSHIP FUNCTIONS TERMINOLOGY

o MF
Some Definitions

e Support |
o Core T ........ |
 Crossover points ot Lol N

(equilibrium points) ° K — Core j
° C(-CUt, Strong a -cut Crossover points

o - cent

- Support

YY/A/Y Y DR.MOHAMMED J
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1.3 FUZZY SETS: MEMBERSHIP FUNCTIONS TERMINOLOGY

MF
Support

« The Support of a fuzzy
set A is the set of all -5
points x in X such that: a

palz) >0 ©
e In other words:

support(4) = {z|pa(z) > 0}

1

YY/3/Y )Y

Crossover points

K <— Core —= j

o - cent

- Support
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1.3 FUZZY SETS: MEMBERSHIP FUNCTIONS TERMINOLOGY

MF
Core
B
» The Core of a fuzzy set
A iS the Set Of all points Tl Lt
x In X such that: o b Lo

pa(z) =1 ’ K

e In other words:

<— Core —

J

Crossover points

core(A) = {z|pa(z) = 1}

o - cent

Tl

YY/3/Y )Y
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1.3 FUZZY SETS: MEMBERSHIP FUNCTIONS TERMINOLOGY

_ MF
Crossover point

« The Crossover point of a |
fuzzy set A is the set ofall .5}l e -
points x in X such that:

pa(z) = 0.5 ° K e j |

° In ()ther WOI'dSI Crossover points

o - cent

crossover(A) = {x|pa(z) = 0.5}

- Support
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1.3 FUZZY SETS: MEMBERSHIP FUNCTIONS TERMINOLOGY

Fuzzy Singleton

« A fuzzy set whose
support is a single point  Membership Grades

?n X is a fuzz singleton 45 Yoar Old

if:ua(z) =1 ol

- o [

* A fuzzy singleton S

e “45 years old” Core and Support

YY/A/Y Y DR.MOHAMMED JAS| Mo 30



1.3 FUZZY SETS: MEMBERSHIP FUNCTIONS TERMINOLOGY

a -cut and strong « -cut
* Given a fuzzy set A defined on X and any number a €[0,1],

the a -cut and strong @-cut are the crisp sefs:
A = {x|]Ax) = «}
= x| Af) s nk

*The @ -cut of a fuzzy set A is the crisp set that contains all the elements of the
universal set X whose membership grades in A are greater than or equal to
the specified value of o .

*The strong a -cut of a fuzzy set A is the crisp set that contains all the elements
of the universal set X whose membership grades in A are only greater than
the specified value of o .
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1.3 FUZZY SETS: MEMBERSHIP FUNCTIONS TERMINOLOGY

The height of a fuzzy set A:

“The height of a fuzzy set A is the largest membership grade obtained
by any element in that set.

h(A) =sup A(X)

Xe X

A fuzzy set A is called normal when h(A) = 1.
“It is called subnormal when h(A) <1.

“The height of A may also be viewed as the supremum of « for
which “Ax¢ .
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1.3 FUZZY SETS: MEMBERSHIP FUNCTIONS TERMINOLOGY

* Scalar cardinality: The cardinality of a fuzzy set is equal
to the sum of the membership degrees of all elements.

* The cardinality is represented by |A]

o
A= ()
i=1

YY/4/Y VY DR.MOHAMMED JASIM
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I.3 FUZZY SETS: CONCAVE FUNCTION

In  mathematics, a real-valued
function f defined on an interval is
called convex, if for any two points x
and y in its domain C and any t in
[0,1], we have

fltz+(1-t)y) <tflz)+ (1-1)f(y).

* In other words, a function is convex
if and only if its epigraph (the set of
points lying on or above the graph) is
a convex set.

YY/3/Y )Y

Jiy)

fix) -

tfix)+ (1 —0)fiy)

flix+({i=t)y)

tx+(I-1)y

T~
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1.3 FUZLZY SETS: CONVEXITY OF FUZZY SETS

* A fuzzy set A is convex if for any a in [0, 1],

Uy (Ax,+(1=A)x,)=zmm( g, (x, ), 14, (x,))

Alternatively, A is convex is all its a-cuts are convex.

\ATRYARERY
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1.4 FUZZY SETS: THEORETIC OPERATIONS
COMPLEMENT

The standard complement of fuzzy set A with respect to the universal
set X is defined for all X € X by the equation A(x)=1- A(x)

Elements of X for which A(X) = A(X) are called equilibrium points of A.

For example, the equilibrium points of A2 in Fig. 1.7 are 27.5 and 52.5.

A(x) A

Figure 1.7 Membership functions representing the concepts of a yo
person. Shown discrete approximation D3 of A5 is
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1.4 FUZZY SETS: THEQRETIC OPERATIONS

COMPLEMENT
(a) Fuzzy Sets A and B {b) Fuzzy Set "not A"
1t
0.8}
0.6
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1.4 FUZZY SETS: THEORETIC OPERATIONS
INTERSECTION AND UNION

Given two fuzzy sets, A and B, their intersection and union are defined
for all xe X by the equations

(AN B)(X) = min[ A(x), B(x)],
(AU B)(x) = max] A(x), B(X)],
C=AnB<u (x)=min( g, (x),ty(x) =, (XNt (x)

C=AuB< u (x)=max( g, (x), e (X)) =1, (X)V tz(X)
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1.4 FUZZY SETS: THEORETIC OPERATIONS
INTERSECTION

(a) Fuzzy Seis Aand B (d) Fuzzy Set "A AND B*
" M n | : 1|
0.8
0.6
0.4
0.2
0 —
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1.4 FUZZY SETS: THEORETIC OPERATIONS
UNION

(a) Fuzzy Sets A and B (c) Fuzzy Set "A OR B*

A B I
1r
0.8|

0.6}
0.4t
0.2}

B
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1.4 FUZZY SETS: THEORETIC OPERATIONS
INTERSECTION AND UNION
A;, A5, A; are normal. TF B=Adndy)

8]

= B and C are subnormal. \ Normality and convexity
- may be lost when we

B and C are convex. S — / == == operate on fuzzy sets by
= BuUC and BuC are not the standard operations

convex. 3L

of intersection and
_ complement.

(BoCME)

Adx 4 Yousg: Ay Nfddls age: A Old: Ay
(x
LA ' !
Y A [ J
amn o s ol »n

0 10 20 30
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1.4 FUZZY SETS: DISTANCE

« The distance df between two sets represented by
points Iin the space is defined as

dP(A.B) =p|> | s, (x) — ptz(x) ¥

=1

« |If p=2, the distance is the Euclidean distance, Iif p=1
the distance it is the Hamming distance

« |f the point B is the empty set (the origin)
dlﬁa.';?}:il,u_{{rf}—ﬂl
d'(A.¢) = 4|= il,u_{{x,- )|

« S0, the cardinality of a fuzzy set is the Hamming
distance to the origin
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1.5 FUZZY SETS: MF FORMULATION (ONE DIMENSIONAL)

X a ©— X
Triangular MF: " (I”b’:‘}—mlﬁ%“”ﬂkb a - z;l{}l

([ (x—a _d-—xY_
Tl'ﬂpﬂZﬂi(lﬂl frapmf (x.a,b,c,d) = max lmm [ > 4 1, i —c ,{}J
MF:
_1fx-c '”|;
Gaussian MF: gaussmf (x:a.c)=e ** °
1
Generalized bell ghellmy (x:a.b.c)=———""""m

MF: b+
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1.5 FUZLY SETS MF FORMULATION (ONE DIMENSIONAL)

embershio Grades
lh: B
=

Mambershin brades
|-

Ml

C| Caaussian M ) e
(M| L
il (k]
o 1 0o
l.:i T'
FaRel: 005
— =
== [ = 1
[l 2 =110 =10 =il | 0] ) 20 al




1.5 FUZZY SETS: MF FORMULATION (ONE DIMENSIONAL)

« Generalized Bell MF: gbellmf (x:a.b.c) = 75

X —cC
1+

{

» Specified by three parameters: {a, b, c}

{a) Changing "a” (b} Changing 'b°

- P S T T
10 -10 -5 0 & 10

{d) Changing "a" and b’

AAVAVARRRY DR.MOHAMMED JASIM 45



| 1.3 FUZZY SETS: HW

Consider three fuzzy sets that represent the concepts of a young, middle-aged,
and old person. The membership functions are defined on the interval [0,80] as

follows:

1 when x < 20
Ai(x) =4 35—x)/15 when20<x < 35 JILILE,
0 when x > 35
0 when either x < 20 or > 60
A (x —20)/15 when20<x <35 |
277 )1 (60—-x)/15 whend45 <x < 60 middle-aged
1 when 35 < x <45
(0 when x < 45
As(x) =3 (x —45)/15 whend45 <x <60 old
! 1 when x > 60
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1.3 FUZZY SETS: HW

0 when either x < 20 or > 60
(x —20)/15 when20<x <35

A20%) =1 (60—x)/15 when45 < x < 60
1 when35 <x <435
TABLE 1.2 DISCRETE APPROXIMATION
o A Young: A, Middle age: A, Old: Aj OF MEMBERSHIP FUNCTION A, (FIG. 1.7)
i(%) # * ‘L BY FUNCTION D, OF THE FORM:
1 D;1(0,2,4,...,80} — [0, 1]
x Dy (x)
| x ¢€(22,24,...,58) 0.00
‘ x € {22, 58} 0.13
/ x € {24, 56} 0.27
x € (26, 54} 0.40
x e (28,52} 0.53
| , I x € {30, 30} 0.67.
0 10 20 30 40 50 10 80 x € {32, 48} 0.80
—_— I € {34, 40} 0.93
Age: X x €(36,38,...,44) 1.00

Figure 1.7 Membership functions representing the concepts of a young, middle-aged, and old
person. Shown discrete approximation D3 of A; is defined numerically in Table 1.2.
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1.3 FUZLZY SETS: HW

Find:

ICore of A,.

_ISupport of A,.
_ICrossover points of A,.

Ja-cut, strong a —cut of A,.
Ja-cut, strong a —cut of A, when a=0.2.

_IScalar cardinality of 4,.

_lAre these sets normalZ.
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