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We have two binomial population: Pop I and Pop II.

Pop I . let 𝑝1 (𝑝2) be the probability of a "success". We

want a fuzzy estimator for 𝑝1 − 𝑝2· We take a random

sample of size 𝑛1 (𝑛2) from Pop I (II) and observe 𝑥1

(𝑥2) successes. Then our point estimator for 𝑝1 (𝑝2) is

 𝑝1 =
𝑥1

𝑛1
(  𝑝2 =

𝑥2

𝑛2
), We assume that these two random

samples are independent. Then our point estimator of

𝑝1 − 𝑝2 is  𝑝1 −  𝑝2.
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Now we would like to use the normal approximation to

the binomial to construct confidence intervals for

𝑝1 − 𝑝2. To do this 𝑛1 and 𝑛2 need to be sufficiently

large. So we assume that the sample sizes are

sufficiently large so that we may use the normal

approximation.
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Now  𝑝𝑖 is (approximately) normally distributed with

mean 𝑝𝑖 and variance 𝑝𝑖(1 − 𝑝𝑖 )/𝑛𝑖 , 𝑖 = 1,2. Then

 𝑝1 −  𝑝2 is (approximately) normally distributed with

mean 𝑝1 − 𝑝2 and variance

𝑝1(1 − 𝑝1)/𝑛1 + 𝑝2(1 − 𝑝2)/𝑛2. 

This would lead directly to confidence interval, but

however we can not evaluate the variance

expression because we do not know a value for

𝑝1𝑎𝑛𝑑 𝑝2
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We solve this problem by substituting  𝑝𝑖for 𝑝𝑖 , 𝑖 = 1,2,
in the variance equation and use 𝑞𝑖 = 1 − 𝑝𝑖. Let

Then
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Solve the inequality for 𝑝1 − 𝑝2 we obtain an

approximate 1 − 𝛽 100% confidence interval for

𝑝1 − 𝑝2 as:

Put these confidence intervals together to produce

our fuzzy estimator  𝑝12 for 𝑝1 − 𝑝2·
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Let the data be: (1) X1 = 63, n1 = 91; and (2) X2 =

42, n2 = 79. Then the equation becomes

To obtain a graph of  𝑝12 assume that 0.01 ≤ 𝛽 ≤ 1.

and then the graph of  𝑝12 is shown in Figure 10.1
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Estimate 𝜎1
2/𝜎2

2
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We have two populations: Pop I and Pop II. Pop I is

normally distributed with unknown mean 𝜇1 and

unknown variance 𝜎1
2 . Pop II is also normally

distributed with unknown mean 𝜇2 and unknown

variance 𝜎2
2. We wish to construct a fuzzy estimator

for 𝜎1
2/𝜎2

2.
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There are two normal populations Pop I and Pop II

where: (1) Pop I is N(𝜇1 ,𝜎1
2 ); and (2) Pop II is

N(𝜇2,𝜎2
2). We want to get confidence intervals for

𝜎1
2/𝜎2

2. To estimate 𝜎1
2 (𝜎2

2) we obtain a random

sample of size 𝑛1 (𝑛2) from Pop I (Pop II) and

compute 𝑠1
2 (𝑠2

2) the sample variance. Assume the

two random samples were independent. Then we

know

𝑓0 = (𝑠2
2/𝜎2

2)/(𝑠1
2/𝜎1

2). 
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has a F distribution with 𝑛2 - 1 degrees of freedom

(numerator) and 𝑛1 - 1 degrees of freedom

(denominator).

Then

It immediately follows that a 1 − 𝛽 100% confidence

interval for 𝜎1
2/𝜎2

2 is

𝑎(𝑠1
2/𝑠2

2), 𝑏(𝑠1
2/𝑠2

2)
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Now to determine the a and b.

Assume that X is a random variable from a F

distribution with degrees of freedom 𝑢 (numerator) and

𝑣 (denominator). Let 𝐹𝐿,𝛽/2 (𝑢, 𝑣) be a constant so that

𝑃(𝑋 ≤ 𝐹
𝐿,

𝛽

2

(𝑢, 𝑣))=𝛽/2 .Also let 𝐹𝐿,𝛽/2 (𝑢, 𝑣) be another

constant so that 𝑃(𝑋 ≥ 𝐹𝐿,𝛽/2 (𝑢, 𝑣))=𝛽/2 . Then the

usual confidence interval has a = 𝐹𝐿,𝛽/2 (𝑢, 𝑣) and

b = 𝐹𝐿,𝛽/2 (𝑢, 𝑣) which gives.
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Our fuzzy estimator of 𝜎1
2/𝜎2

2 would be constructed by

placing the confidence intervals in equation (11.5) one

on top of another. However, this fuzzy estimator is

biased. It is biased because the vertex (membership

value one) is not at the point estimator 𝑆1
2/𝑆2

2. To obtain

the value at the vertex we substitute one for 𝛽 and get

the 0% confidence interval

Where Usually the

constant 𝑐 ≠ 1. We will have c = 1 if 𝑛1 = 𝑛2.
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Since c is usually not one the 0% confidence interval

will not always be the point estimator. Let us now build

an unbiased fuzzy estimator for 𝜎1
2/𝜎2

2.

Our method of making an unbiased fuzzy estimator is

similar to what we did in Chapter 6. Assume that

0.01 ≤ 𝛽 ≤ 1. Now this interval for 𝛽 is fixed and also

𝑛1 , 𝑛2, 𝑆1
2 and 𝑆2

2 are fixed. Define
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The confidence interval for the ratio of the variances is

for We start with a 99% confidence interval

when and end up with a 0% confidence interval

for continuously increases (decreases)

to one as goes from zero to one. Notice that now

the 0% confidence interval is 𝑠1
2/𝑠2

2, 𝑠1
2/𝑠2

2 = 𝑠1
2/𝑠2

2and

it is unbiased. As usual, we place these confidence

intervals one on top of another to obtain our (unbiased)

fuzzy estimator for  𝜎12the ratio of the variances.
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Our confidence interval for 𝜎1
2/𝜎2

2 , the ratio of the

population standard deviations, is

These confidence intervals will make up our fuzzy

estimator  𝜎12 for 𝜎1
2/𝜎2

2. We may find the relationship

between and 𝛽 because 𝛽 is a function of given by

where "F" denotes the F distribution with 𝑛2 − 1 and

𝑛1 − 1 degrees of freedom.
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From Pop I we have a random sample of size n1 = 8
and we compute 𝑠1

2 = 14.3. From Pop II the data was

𝑛2 = 12 and 𝑠2
2 = 9.8. Then

The confidence intervals become

For the graph of  𝜎12 in Figure 11.1 from

above equation.
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x=linspace(0,15);

y=linspace(0.01,1);

X2L= finv(.995, 11,7);

X2R= finv(0.005,11,7);

f1=((1-y)* X2R + y)*(1.459);
f2=((1-y)* X2L + y)*(1.459);

plot(f1,y,f2,y)

ylabel ('alpha')

xlabel('x')


