FUZZY STATISTICS

Dr. Mohammed Jasim
Mohammed
Chapter 1

From Crisp Sets to Fuzzy Sets
1.1 INTRODUCTION

UNCERTAINTY

Uncertainties arise from many sources:

- Random effects
- Measurement errors
- Modeling choices
- Parameter choices
- Inference processes
- Decision making
- Lack of knowledge
1.1 INTRODUCTION

UNCERTAINTY TYPES

Three types of uncertainty are now recognized in the five theories:

- **Nonspecificity** (or imprecision)
 which is connected with sizes (cardinalities) of relevant sets of alternatives.

- **Fuzziness** (or vagueness),
 which results from imprecise boundaries of fuzzy sets.

- **Strife** (or discord)
 which expresses conflicts among the various sets of alternatives.
UNCERTAINTY

FUZZINESS
Lack of definite or sharp distinctions
- vagueness
- cloudiness
- haziness
- unclerness
- indistinctness
- sharplessness

AMBIGUITY
One-to-many relationships

NONSPECIFICITY
Two or more alternatives are left unspecified
- variety
- generality
- diversity
- equivocation
- imprecision

DISCORD
Disagreement in choosing among several alternatives
- dissonance
- incongruity
- discrepancy
- conflict
1.1 INTRODUCTION

Crisp Sets versus Fuzzy Sets

• The crisp set is defined in such a way as to dichotomize the individuals in some given universe of discourse into two groups: members (those that certainly belong in the set) and nonmembers (those that certainly, do not).

• A fuzzy set can be defined mathematically by assigning to each possible individual in the universe of discourse a value representing its grade of membership in the fuzzy set.
1.1 INTRODUCTION

FROM CRISP SETS TO FUZZY SETS

- Probability theory is capable of representing only one of several distinct types of uncertainty.
- When A is a fuzzy set and x is a relevant object, the proposition “x is a member of A” is not necessarily either true or false. It may be true only to some degree, the degree to which x is actually a member of A.
1.2 CRISP SETS: AN OVERVIEW

The theory of crisp set

The following general symbols are employed throughout the text:

\[Z = \{\ldots, -2, -1, 0, 1, 2, \ldots\}\] (the set of all integers),
\[N = \{1, 2, 3, \ldots\}\] (the set of all positive integers or natural numbers),
\[N_0 = \{0, 1, 2, \ldots\}\] (the set of all nonnegative integers),
\[N_n = \{1, 2, \ldots, n\},\]
\[N_{0,n} = \{0, 1, \ldots, n\},\]
\[\mathbb{R}: \text{the set of all real numbers},\]
\[\mathbb{R}^+: \text{the set of all nonnegative real numbers},\]
\[[a, b], (a, b], [a, b), (a, b): \text{closed, left-open, right-open, open interval of real numbers between } a \text{ and } b, \text{ respectively},\]
\[(x_1, x_2, \ldots, x_n): \text{ordered } n-\text{tuple of elements } x_1, x_2, \ldots, x_n.\]
1.2 CRISP SETS: AN OVERVIEW

Three basic methods to define sets:

- **The list method**: a set is defined by naming all its members.
 \[A = \{a_1, a_2, \ldots, a_n\} \]

- **The rule method**: a set is defined by a property satisfied by its members.
 \[A = \{x \mid P(x)\} \]
 where ‘|’ denotes the phrase “such that”
 \[P(x) \] a proposition of the form “\(x \) has the property \(P \) ”

- **A set is defined by a characteristic function.**
 \[
 \chi_A(x) = \begin{cases}
 1 & \text{for } x \in A \\
 0 & \text{for } x \notin A
 \end{cases}
 \]
 the characteristic function \(\chi_A : X \to \{0,1\} \)
1.2 CRISP SETS: AN OVERVIEW

The union of sets A and B:

$$A \cup B = \{ x \mid x \in A \text{ or } x \in B \}$$

The generalized union operation: for a family of sets,

$$\bigcup_{i \in I} A_i = \{ x \mid x \in A_i \text{ for some } i \in I \}$$

The intersection of sets A and B:

$$A \cap B = \{ x \mid x \in A \text{ and } x \in B \}$$

The generalized intersection operation: for a family of sets,

$$\bigcap_{i \in I} A_i = \{ x \mid x \in A_i \text{ for all } i \in I \}$$
1.2 CRISP SETS: AN OVERVIEW

Table 1.1: Fundamental Properties of Crisp Set Operations

<table>
<thead>
<tr>
<th>Property</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Involution</td>
<td>$\overline{\overline{A}} = A$</td>
</tr>
<tr>
<td>Commutativity</td>
<td>$A \cup B = B \cup A$</td>
</tr>
<tr>
<td></td>
<td>$A \cap B = B \cap A$</td>
</tr>
<tr>
<td>Associativity</td>
<td>$(A \cup B) \cup C = A \cup (B \cup C)$</td>
</tr>
<tr>
<td></td>
<td>$(A \cap B) \cap C = A \cap (B \cap C)$</td>
</tr>
<tr>
<td>Distributivity</td>
<td>$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$</td>
</tr>
<tr>
<td></td>
<td>$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$</td>
</tr>
<tr>
<td>Idempotence</td>
<td>$A \cup A = A$</td>
</tr>
<tr>
<td></td>
<td>$A \cap A = A$</td>
</tr>
<tr>
<td>Absorption</td>
<td>$A \cup (A \cap B) = A$</td>
</tr>
<tr>
<td></td>
<td>$A \cap (A \cup B) = A$</td>
</tr>
<tr>
<td>Absorption by X and \emptyset</td>
<td>$A \cup X = X$</td>
</tr>
<tr>
<td></td>
<td>$A \cap \emptyset = \emptyset$</td>
</tr>
<tr>
<td>Identity</td>
<td>$A \cup \emptyset = A$</td>
</tr>
<tr>
<td></td>
<td>$A \cap X = A$</td>
</tr>
<tr>
<td>Law of contradiction</td>
<td>$A \cap \overline{A} = \emptyset$</td>
</tr>
<tr>
<td>Law of excluded middle</td>
<td></td>
</tr>
<tr>
<td>De Morgan’s laws</td>
<td>$A \cap B = A \cup \overline{B}$</td>
</tr>
<tr>
<td></td>
<td>$A \cup B = A \cap \overline{B}$</td>
</tr>
</tbody>
</table>
1.2 CRISP SETS: AN OVERVIEW

Let R denote a set of real number.

- If there is a real number r such that $x \leq r$ for every $x \in R$, then r is called an upper bound of R, and R is bounded above by r.
- If there is a real number s such that $x \geq s$ for every $x \in R$, then s is called an lower bound of R, and R is bounded below by s.

For any set of real numbers R that is bounded above, a real number r is called the supremum of R (write $r = \sup R$) iff

(a) r is an upper bound of R;

(b) no number less than r is an upper bound of R.

For any set of real numbers R that is bounded below, a real number s is called the infimum of R (write $s = \inf R$) iff

(a) s is an lower bound of R;

(b) no number greater than s is an lower bound of R.

22/9/2017

DR.MOHAMMED JASIM
1.3 FUZZY SETS: BASIC TYPES

A membership function:

- **A characteristic function**: the values assigned to the elements of the universal set fall within a specified range and indicate the membership grade of these elements in the set.
- Larger values denote higher degrees of set membership.

A set defined by membership functions is a **fuzzy set**.

The most commonly used range of values of membership functions is the **unit interval** \([0,1]\).

We think the universal set \(X\) is always a crisp set.

Notation:

- The membership function of a fuzzy set \(A\) is denoted by \(\mu_A\):
 \[\mu_A : X \rightarrow [0,1]\]
- In the other one, the function is denoted by \(A\) and has the same form
 \[A : X \rightarrow [0,1]\]
1.3 FUZZY SETS: BASIC TYPES

Figure 1.2 Examples of membership functions that may be used in different contexts for characterizing fuzzy sets of real numbers close to 2.
1.3 FUZZY SETS: BASIC TYPES

The four fuzzy sets are similar in the sense that the following properties are possessed by each $A_i (i \in \mathbb{N}_4)$:

(i) $A_i(2) = 1$ and $A_i(x) < 1$ for all $x \neq 2$;

(ii) A_i is symmetric with respect to $x = 2$, that is $A_i(2 + x) = A_i(2 - x)$ for all $x \in \mathbb{R}$;

(iii) $A_i(x)$ decreases monotonically from 1 to 0 with the increasing difference $|2 - x|$.

Each function in Fig. 1.2 is a member of a parameterized family of functions.

$$A_1(x) = \begin{cases} p_1(x - r) + 1 & \text{when } x \in [r - 1/p_1, r] \\ p_1(r - x) + 1 & \text{when } x \in [r, r + 1/p_1] \\ 0 & \text{otherwise} \end{cases}$$

$$A_2(x) = \frac{1}{1 + p_2(x - r)^2}$$

$$A_3(x) = e^{-|p_3(x - r)|}$$

$$A_4(x) = \begin{cases} (1 + \cos(p_4 \pi (x - r))) / 2 & \text{when } x \in [r - 1/p_4, r + 1/p_4] \\ 0 & \text{otherwise} \end{cases}$$
1.3 FUZZY SETS: BASIC TYPES

An example:

- Define the seven levels of education:

0 - no education
1 - elementary school
2 - high school
3 - two-year college degree
4 - bachelor’s degree
5 - master’s degree
6 - doctoral degree

![Diagram showing membership functions for different levels of education]

Figure 1.3 Examples of fuzzy sets expressing the concepts of people that are little educated (○), highly educated (●), and very highly educated (□).
1.3 FUZZY SETS: BASIC TYPES

Several fuzzy sets representing linguistic (Value) concepts such as low, medium, high, and so one are often employed to define states of a variable. Such a variable is usually called a fuzzy variable.

For example:

![Diagram showing membership functions for fuzzy sets]

Figure 1.4 Temperature in the range \([T_1, T_2]\) conceived as: (a) a fuzzy variable; (b) a traditional (crisp) variable.
1.3 FUZZY SETS: MEMBERSHIP FUNCTIONS (MFS)

• Characteristics of MFs:
 ▫ Subjective measures
 ▫ Not probability functions
1.3 FUZZY SETS: MEMBERSHIP FUNCTIONS (MFS)

- **Formal definition:**
 A fuzzy set A in X is expressed as a set of ordered pairs:

$$A = \{(x, \mu_A(x))| x \in X\}$$

Fuzzy set | Membership function (MF) | X: Universe or universe of discourse

A fuzzy set is totally characterized by a membership function (MF).
1.3 FUZZY SETS: FUZZY SETS WITH DISCRETE UNIVERSES

• Fuzzy set \(C \) = “desirable city to live in”
 \(X = \{Baghdad, Basra, Erbil\} \) (discrete and non-ordered)
 \(C = \{(Baghdad, 0.1), (Basra, 0.8), (Erbil, 0.9)\} \)

• Fuzzy set \(A \) = “sensible number of children in a family”
 \(X = \{0, 1, 2, 3, 4, 5, 6\} \) (discrete ordered universe)
 \(A = \{(0, .1), (1, .3), (2, .7), (3, 1), (4, .6), (5, .2), (6, .1)\} \)
1.3 FUZZY SETS: FUZZY SETS WITH DISCRETE UNIVERSES

\[A = \{(0, .1), (1, .3), (2, .7), (3, 1), (4, .6), (5, .2), (6, .1)\} \]
1.3 FUZZY SETS: FUZZY SETS WITH CONT. UNIVERSES

Fuzzy set \(B = \text{“about 50 years old”} \)

\(X = \text{Set of positive real numbers (continuous)} \)

\(B = \{ (x, \mu_B(x)) \mid x \text{ in } X \} \)

\[\mu_B(x) = \frac{1}{1 + \left(\frac{x - 50}{10} \right)^2} \]
1.3 FUZZY SETS: ALTERNATIVE NOTATION

- A fuzzy set A can be alternatively denoted as follows:

 \[
 \begin{align*}
 &\text{X is discrete} \quad A = \sum_{x_i \in X} \frac{\mu_A(x_i)}{x_i} \\
 &\text{X is continuous} \quad A = \int_X \frac{\mu_A(x)}{x}
 \end{align*}
 \]

 Note that \sum and integral signs stand for the union of membership grades; “/” stands for a marker and does not imply division.
1.3 FUZZY SETS: ALTERNATIVE NOTATION

- **Examples:**

 \[A = \{(0, 0.1), (1, 0.3), (2, 0.7), (3, 1), (4, 0.7), (5, 0.3), (6, 0.1)\}. \]

 \[A = 0.1/0 + 0.3/1 + 0.7/2 + 1.0/3 + 0.7/4 + 0.3/5 + 0.1/6, \]

 A is discrete

 \[C = \{(San Francisco, 0.9), (Boston, 0.8), (Los Angeles, 0.6)\}. \]

 \[C = 0.9/San Francisco + 0.8/Boston + 0.6/Los Angeles, \]

 C is discrete

 \[B = \text{“about 50 years old”} \]

 \[B = \{(x, \mu_B(x)|x \in X\}, \]

 \[\mu_B(x) = \frac{1}{1 + \left(\frac{x - 50}{10}\right)^4}. \]

 B is continuous

 \[B = \int_{R^+} \frac{1}{1 + \left(\frac{x - 50}{10}\right)^4} \, dx, \]
1.3 FUZZY SETS: MEMBERSHIP FUNCTIONS?

- Subjective evaluation: The shape of the functions is defined by specialists
- Ad-hoc: choose a simple function that is suitable to solve the problem
- Distributions, probabilities: information extracted from measurements
- Adaptation: testing
- Automatic: algorithms used to define functions from data
Some Definitions

- Support
- Core
- Crossover points (equilibrium points)
- α-cut, strong α-cut
1.3 FUZZY SETS: MEMBERSHIP FUNCTIONS TERMINOLOGY

Support

- The Support of a fuzzy set A is the set of all points x in X such that:
 \[\mu_A(x) > 0 \]
- In other words:
 \[\text{support}(A) = \{x | \mu_A(x) > 0\} \]
1.3 FUZZY SETS: MEMBERSHIP FUNCTIONS TERMINOLOGY

Core

- The Core of a fuzzy set \(A \) is the set of all points \(x \) in \(X \) such that:

\[
\mu_A(x) = 1
\]

- In other words:

\[
\text{core}(A) = \{x | \mu_A(x) = 1\}
\]
1.3 FUZZY SETS: MEMBERSHIP FUNCTIONS TERMINOLOGY

Crossover point

- The Crossover point of a fuzzy set A is the set of all points x in X such that:

$$\mu_A(x) = 0.5$$

- In other words:

$$\text{crossover}(A) = \{x|\mu_A(x) = 0.5\}$$
1.3 FUZZY SETS: MEMBERSHIP FUNCTIONS TERMINOLOGY

Fuzzy Singleton

• A fuzzy set whose support is a single point in \(X \) is a fuzz singleton if: \(\mu_A(x) = 1 \)

• Example:
 • A fuzzy singleton
 • “45 years old”
1.3 FUZZY SETS: MEMBERSHIP FUNCTIONS TERMINOLOGY

\(\alpha \)-cut and strong \(\alpha \)-cut

- Given a fuzzy set \(A \) defined on \(X \) and any number \(\alpha \in [0,1] \),
 the \(\alpha \)-cut and strong \(\alpha \)-cut are the crisp sets:

\[
\alpha A = \{ x | A(x) \geq \alpha \} \\
\alpha^+ A = \{ x | A(x) > \alpha \}.
\]

- The \(\alpha \)-cut of a fuzzy set \(A \) is the crisp set that contains all the elements of the universal set \(X \) whose membership grades in \(A \) are greater than or equal to the specified value of \(\alpha \).

- The strong \(\alpha \)-cut of a fuzzy set \(A \) is the crisp set that contains all the elements of the universal set \(X \) whose membership grades in \(A \) are only greater than the specified value of \(\alpha \).
1.3 FUZZY SETS: MEMBERSHIP FUNCTIONS TERMINOLOGY

The height of a fuzzy set A:

- The height of a fuzzy set A is the largest membership grade obtained by any element in that set.

$$h(A) = \sup_{x \in X} A(x)$$

- A fuzzy set A is called normal when $h(A) = 1$.
- It is called subnormal when $h(A) < 1$.
- The height of A may also be viewed as the supremum of α for which $\alpha A \neq \phi$.
1.3 FUZZY SETS: MEMBERSHIP FUNCTIONS TERMINOLOGY

• Scalar cardinality: The cardinality of a fuzzy set is equal to the sum of the membership degrees of all elements.

• The cardinality is represented by $|A|$

$$|A| = \sum_{i=1}^{n} \mu_A(x_i)$$
1.3 FUZZY SETS: CONCAVE FUNCTION

In mathematics, a real-valued function f defined on an interval is called convex, if for any two points x and y in its domain C and any t in $[0,1]$, we have

$$f(tx + (1-t)y) \leq tf(x) + (1-t)f(y).$$

- In other words, a function is convex if and only if its epigraph (the set of points lying on or above the graph) is a convex set.
1.3 FUZZY SETS: CONVEXITY OF FUZZY SETS

• A fuzzy set \(A \) is convex if for any \(\alpha \) in \([0, 1]\),

\[
\mu_A (\lambda x_1 + (1-\lambda)x_2) \geq \min(\mu_A(x_1), \mu_A(x_2))
\]

Alternatively, \(A \) is convex if all its \(\alpha \)-cuts are convex.

![Diagram](a) Two Convex Fuzzy Sets (b) A Nonconvex Fuzzy Set

Membership Grades

Membership Grades

0 0.5 1

0 0.5 1
1.4 FUZZY SETS: THEORETIC OPERATIONS

COMPLEMENT

The standard complement of fuzzy set A with respect to the universal set X is defined for all $x \in X$ by the equation $\bar{A}(x) = 1 - A(x)$

Elements of X for which $\bar{A}(x) = A(x)$ are called equilibrium points of A.

For example, the equilibrium points of A_2 in Fig. 1.7 are 27.5 and 52.5.
1.4 FUZZY SETS: THEORETIC OPERATIONS

(a) Fuzzy Sets A and B

(b) Fuzzy Set "not A"
1.4 FUZZY SETS: THEORETIC OPERATIONS
INTERSECTION AND UNION

Given two fuzzy sets, A and B, their intersection and union are defined for all $x \in X$ by the equations

$$(A \cap B)(x) = \min[A(x), B(x)],$$
$$(A \cup B)(x) = \max[A(x), B(x)],$$

$C = A \cap B \iff \mu_c(x) = \min(\mu_A(x), \mu_B(x)) = \mu_A(x) \land \mu_B(x)$

$C = A \cup B \iff \mu_c(x) = \max(\mu_A(x), \mu_B(x)) = \mu_A(x) \lor \mu_B(x)$
1.4 FUZZY SETS: THEORETIC OPERATIONS
INTERSECTION

(a) Fuzzy Sets A and B
(d) Fuzzy Set "A AND B"
1.4 FUZZY SETS: THEORETIC OPERATIONS
UNION
1.4 FUZZY SETS: THEORETIC OPERATIONS
INTERSECTION AND UNION

- A_1, A_2, A_3 are normal.
- B and C are subnormal.
- B and C are convex.
- $B \cup C$ and $\overline{B \cup C}$ are not convex.

Normality and convexity may be lost when we operate on fuzzy sets by the standard operations of intersection and complement.
1.4 FUZZY SETS: DISTANCE

- The distance \(d^p \) between two sets represented by points in the space is defined as
\[
d^p (A, B) = \sqrt[p]{\sum_{i=1}^{n} | \mu_A(x_i) - \mu_B(x_i) |^p}
\]

- If \(p=2 \), the distance is the Euclidean distance, if \(p=1 \) the distance it is the Hamming distance.
- If the point \(B \) is the empty set (the origin)
\[
d^1(A, \varphi) = \sum_{i=1}^{n} | \mu_A(x_i) - 0 |
\]
\[
d^1(A, \varphi) = | A | = \sum_{i=1}^{n} | \mu_A(x_i) |
\]
- So, the cardinality of a fuzzy set is the Hamming distance to the origin.
1.5 FUZZY SETS: MF FORMULATION (ONE DIMENSIONAL)

Triangular MF: \[\text{trimf} \ (x; a, b, c) = \max \left(\min \left(\frac{x - a}{b - a}, \frac{c - x}{c - b} \right), 0 \right) \]

Trapezoidal MF: \[\text{trapmf} \ (x; a, b, c, d) = \max \left(\min \left(\frac{x - a}{b - a}, 1, \frac{d - x}{d - c} \right), 0 \right) \]

Gaussian MF: \[\text{gaussmf} \ (x; a, c) = e^{-\frac{1}{2} \left(\frac{x - c}{a} \right)^2} \]

Generalized bell MF: \[\text{gbellmf} \ (x; a, b, c) = \frac{1}{1 + \left| \frac{x - c}{a} \right|^{2b}} \]
1.5 FUZZY SETS: MF FORMULATION (ONE DIMENSIONAL)
1.5 FUZZY SETS: MF FORMULATION (ONE DIMENSIONAL)

- Generalized Bell MF: \[gbellmf \ (x; a, b, c) = \frac{1}{1 + \left(\frac{x - c}{a} \right)^{2b}} \]

- Specified by three parameters: \{a, b, c\}
1.3 FUZZY SETS: HW

Consider three fuzzy sets that represent the concepts of a young, middle-aged, and old person. The membership functions are defined on the interval [0,80] as follows:

$$A_1(x) = \begin{cases}
1 & \text{when } x \leq 20 \\
(35 - x)/15 & \text{when } 20 < x < 35 \\
0 & \text{when } x \geq 35
\end{cases}$$

$$A_2(x) = \begin{cases}
0 & \text{when either } x \leq 20 \text{ or } \geq 60 \\
(x - 20)/15 & \text{when } 20 < x < 35 \\
(60 - x)/15 & \text{when } 45 < x < 60 \\
1 & \text{when } 35 \leq x \leq 45
\end{cases}$$

$$A_3(x) = \begin{cases}
0 & \text{when } x \leq 45 \\
(x - 45)/15 & \text{when } 45 < x < 60 \\
1 & \text{when } x \geq 60
\end{cases}$$
1.3 FUZZY SETS: HW

\[A_2(x) = \begin{cases}
0 & \text{when either } x \leq 20 \text{ or } \geq 60 \\
(x - 20)/15 & \text{when } 20 < x < 35 \\
(60 - x)/15 & \text{when } 45 < x < 60 \\
1 & \text{when } 35 \leq x \leq 45
\end{cases} \]

Figure 1.7 Membership functions representing the concepts of a young, middle-aged, and old person. Shown discrete approximation \(D_2 \) of \(A_2 \) is defined numerically in Table 1.2.

Table 1.2 Discrete Approximation of Membership Function \(A_2 \) (Fig. 1.7) by Function \(D_2 \) of the Form: \(D_2 : [0, 2, 4, \ldots, 80] \to [0, 1] \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(D_2(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \notin {22, 24, \ldots, 58})</td>
<td>0.00</td>
</tr>
<tr>
<td>(x \in {22, 24, \ldots, 58})</td>
<td>1.00</td>
</tr>
</tbody>
</table>

1.3 FUZZY SETS: HW

Find:

- Core of A_2.
- Support of A_2.
- Crossover points of A_2.
- α-cut, strong α-cut of A_2.
- α-cut, strong α-cut of A_2 when $\alpha=0.2$.
- Scalar cardinality of A_2.
- Are these sets normal?