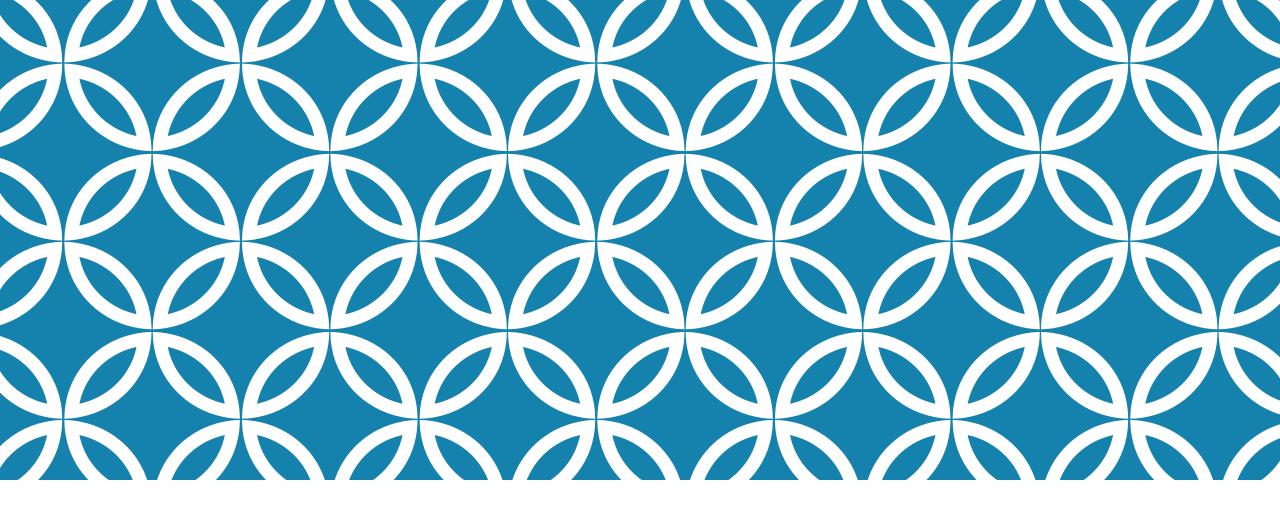


FUZZY STATISTICS

Dr. Mohammed Jasim Mohammed



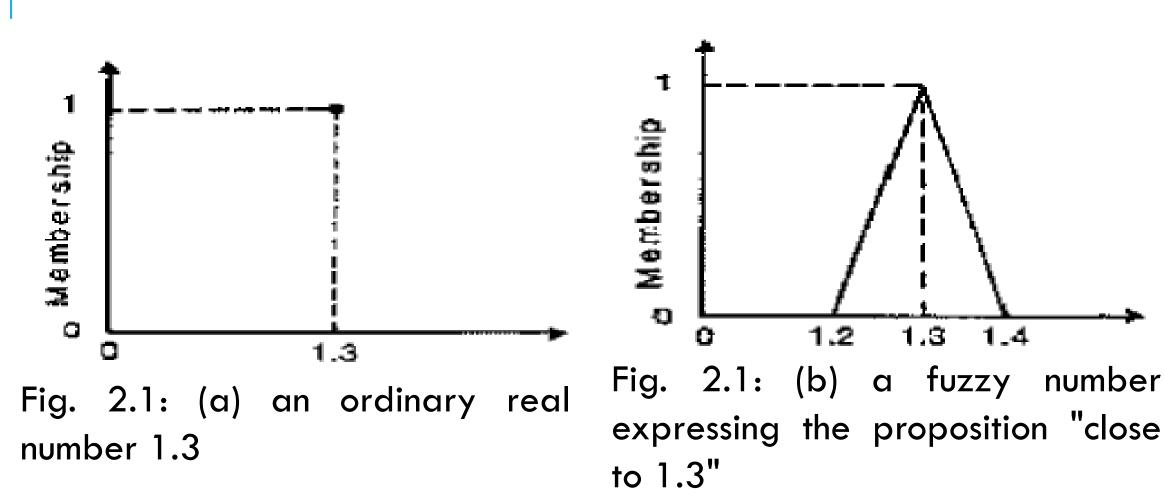
Fuzzy Number

Chapter 2

A fuzzy number is simply an ordinary number whose precise value is somewhat uncertain. Fuzzy numbers are used in statistics, computer programming, engineering, and experimental science. If a fuzzy set is convex and normalized, and its membership function is defined in R and piecewise continuous, a fuzzy set A on R must possess at least the following three properties: (1) A must be a normal fuzzy set; (ii) ^a must be a closed interval for every $\alpha \in (0, 1]$; (iii) The support of A, ^{0+}A , must be bounded.

Fuzzy number is expressed as a fuzzy set defining a fuzzy interval in the real number R. Since the boundary of this interval is ambiguous, the interval is also a fuzzy set. Generally a fuzzy interval is represented by two end points a and b and a peak point c as [a, c, b].

Special cases of fuzzy numbers include ordinary real numbers and intervals of real numbers.



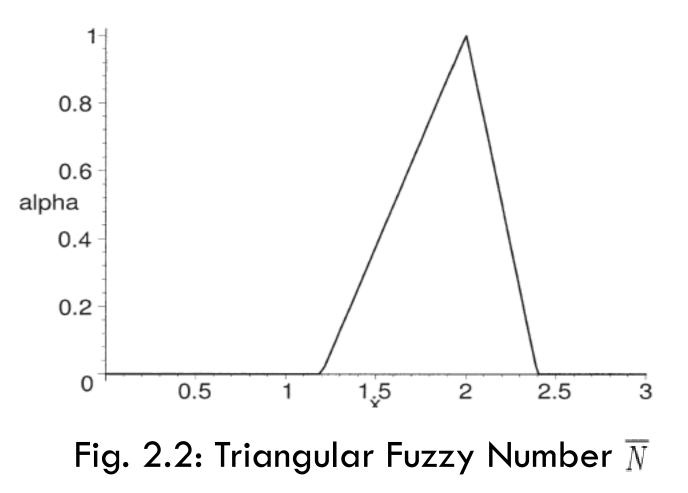
closed interval [1.25, L35].



a flat region (a fuzzy interval).

2.1 FUZZY NUMBER: TRIANGULAR FUZZY NUMBER

A triangular fuzzy number \overline{N} is defined by three numbers a < b < cwhere the base of the triangle is the interval [a, c] and its vertex is at x = b. Triangular fuzzy numbers will be written as $\overline{N} = (a/b/c)$. A triangular fuzzy number $\overline{N} = (1.2/2/2.4)$ is shown in Figure 2.2. We see that $\overline{N}(2) = 1$, $\overline{N}(1.6) = 0.5$, etc.



2.2 ARITHMETIC OPERATIONS ON INTERVALS

If \overline{A} and \overline{B} are two fuzzy numbers we will need to add, subtract, multiply and divide them. There are two basic methods of computing $\overline{A} + \overline{B}$, $\overline{A} - \overline{B}$, etc. which are: (1) extension principle; and (2) α -cuts and interval arithmetic.

2.2.1 EXTENSION PRINCIPLE

Let \overline{A} and \overline{B} be two fuzzy numbers. If $\overline{A} + \overline{B} = \overline{C}$, then the membership function for \overline{C} is defined as

$$\overline{C}(z) = \sup_{x,y} \{\min(\overline{A}(x), \overline{B}(y)) | x + y = z\} \ .$$
 If we set $\overline{C} = \overline{A} - \overline{B}$, then

$$\overline{C}(z) = \sup_{x,y} \{ \min(\overline{A}(x), \overline{B}(y)) | x - y = z \}$$

2.2.1 EXTENSION PRINCIPLE

Similarly, $\overline{C} = \overline{A} \cdot \overline{B}$, then

$$\overline{C}(z) = \sup_{x,y} \{ \min(\overline{A}(x), \overline{B}(y)) | x \cdot y = z \},\$$

and if $\overline{C} = \overline{A}/\overline{B}$,

$$\overline{C}(z) = \sup_{x,y} \{ \min(\overline{A}(x), \overline{B}(y)) | x/y = z \} .$$

2.2.1 EXTENSION PRINCIPLE

In all cases \overline{C} is also a fuzzy number. We assume that zero does not belong to the support of \overline{B} in $\overline{C} = \overline{A}/\overline{B}$. If \overline{A} and \overline{B} are triangular (shaped) fuzzy numbers then so are $\overline{A} + \overline{B}$ and $\overline{A} - \overline{B}$, but $\overline{A} \cdot \overline{B}$ and $\overline{A}/\overline{B}$ will be triangular (shaped) shaped fuzzy numbers.

2.2.2 INTERVAL ARITHMETIC

Let $[a_1,b_1]$ and $[a_2,b_2]$ be two closed , bounded, intervals of real numbers. If * denotes addition, subtraction, multiplication , or division, then $[a_1,b_1] * [a_2,b_2] = [\alpha,\beta]$ where

$$[\alpha, \beta] = \{a * b | a_1 \le a \le b_1, a_2 \le b \le b_2\} .$$
(2.8)

If * is division, we must assume that zero does not belong to $[a_2, b_2]$. We may simplify equation (2.8) as follows:

2.2.2 INTERVAL ARITHMETIC

$$\begin{aligned} &[a_1, b_1] + [a_2, b_2] &= [a_1 + a_2, b_1 + b_2], \\ &[a_1, b_1] - [a_2, b_2] &= [a_1 - b_2, b_1 - a_2], \\ &[a_1, b_1] / [a_2, b_2] &= [a_1, b_1] \cdot \left[\frac{1}{b_2}, \frac{1}{a_2}\right], \\ &[a_1, b_1] \cdot [a_2, b_2] &= [\alpha, \beta], \end{aligned}$$

2.2.2 INTERVAL ARITHMETIC

where

 $\alpha = \min\{a_1a_2, a_1b_2, b_1a_2, b_1b_2\},\$ $\beta = \max\{a_1a_2, a_1b_2, b_1a_2, b_1b_2\}.$

2.2.3 FUZZY ARITHMETIC

Again we have two fuzzy numbers \overline{A} and \overline{B} . We know α -cuts are closed, bounded, intervals so let $\overline{A}[\alpha] = [a_1(\alpha), a_2(\alpha)], \ \overline{B}[\alpha] = [b_1(\alpha), b_2(\alpha)]$. Then if $\overline{C} = \overline{A} + \overline{B}$ we have

$$\overline{C}[\alpha] = \overline{A}[\alpha] + \overline{B}[\alpha] .$$

We add the intervals using equation (2.9). Setting $\overline{C} = \overline{A} - \overline{B}$ we get

$$\overline{C}[\alpha] = \overline{A}[\alpha] - \overline{B}[\alpha],$$

for all α in [0, 1]. Also

$$\overline{C}[\alpha] = \overline{A}[\alpha] \cdot \overline{B}[\alpha],$$

for $\overline{C} = \overline{A} \cdot \overline{B}$ and

 $\overline{C}[\alpha] = \overline{A}[\alpha] / \overline{B}[\alpha],$

when $\overline{C} = \overline{A}/\overline{B}$, provided that zero does not belong to $\overline{B}[\alpha]$ for all α .

2.2.3 FUZZY ARITHMETIC EXAMPLE :

Let $\overline{A} = (-3/-2/-1)$ and $\overline{B} = (4/5/6)$. We determine $\overline{A} \cdot \overline{B}$ using α -cuts and interval arithmetic. We compute $\overline{A}[\alpha] = [-3 + \alpha, -1 - \alpha]$ and $\overline{B}[\alpha] = [4+\alpha, 6-\alpha]$. So, if $\overline{C} = \overline{A} \cdot \overline{B}$ we obtain $\overline{C}[\alpha] = [(\alpha-3)(6-\alpha), (-1-\alpha)(4+\alpha)], 0 \le \alpha \le 1$. The graph of \overline{C} is shown in Figure 2.3.

