
fuzzy statistics

Dr. Mohammed Jasim Mohammed

Fuzzy Number

2.1 FUZZY NUMBER

A fuzzy number is simply an ordinary number whose precise value is somewhat uncertain. Fuzzy numbers are used in statistics, computer programming, engineering, and experimental science.
If a fuzzy set is convex and normalized, and its membership function is defined in R and piecewise continuous, a fuzzy set A on R must possess at least the following three properties:
(1) A must be a normal fuzzy set;
(ii) ${ }^{\alpha}$ A must be a closed interval for every $\alpha \in(0,1]$;
(iii) The support of $A,{ }^{0+} A$, must be bounded.

2.1 FUZZY NUMBER

Fuzzy number is expressed as a fuzzy set defining a fuzzy interval in the real number R. Since the boundary of this interval is ambiguous, the interval is also a fuzzy set. Generally a fuzzy interval is represented by two end points a and b and a peak point c as $[a, c, b]$.
Special cases of fuzzy numbers include ordinary real numbers and intervals of real numbers.

2.1 FUZZY NUMBER

Fig. 2.1: (a) an ordinary real number 1.3

Fig. 2.1: (b) a fuzzy number expressing the proposition "close to 1.3 "

2.1 FUZZY NUMBER

Fig. 2.1: (c) an ordinary (crisp) closed interval [1.25, L35].

Fig. 2.1: (d) a fuzzy number with a flat region (a fuzzy interval).

2.1 FUZZY NUMBER: TRIANGULAR FUZZY NUMBER

A triangular fuzzy number \bar{N} is defined by three numbers $\mathrm{a}<\mathrm{b}<\mathrm{c}$ where the base of the triangle is the interval [a, c] and its vertex is at $\mathrm{x}=\mathrm{b}$. Triangular fuzzy numbers will be written as $\bar{N}=(\mathrm{a} / \mathrm{b} / \mathrm{c})$. A triangular fuzzy number $\bar{N}=(1.2 / 2 / 2.4)$ is shown in Figure 2.2. We see that $\bar{N}(\overline{2})=1, \bar{N}(1.6)=0.5$, etc.

2.1 FUZZY NUMBER

Fig. 2.2: Triangular Fuzzy Number \bar{N}

2.2 ARITHMETIC OPERATIONS ON INTERVALS

If \bar{A} and \bar{B} are two fuzzy numbers we will need to add, subtract, multiply and divide them. There are two basic methods of computing $\bar{A}+\bar{B}, \bar{A}-\bar{B}$, etc. which are: (1) extension principle; and (2) a-cuts and interval arithmetic.

2.2.1 EXTENSION PRINCIPLE

Let \bar{A} and \bar{B} be two fuzzy numbers. If $\bar{A}+\bar{B}=\bar{C}$, then the membership function for \bar{C} is defined as

$$
\bar{C}(z)=\sup _{x, y}\{\min (\bar{A}(x), \bar{B}(y)) \mid x+y=z\}
$$

If we set $\bar{C}=\bar{A}-\bar{B}$, then

$$
\bar{C}(z)=\sup _{x, y}\{\min (\bar{A}(x), \bar{B}(y)) \mid x-y=z\}
$$

2.2.1 EXTENSION PRINCIPLE

Similarly, $\bar{C}=\bar{A} \cdot \bar{B}$, then

$$
\bar{C}(z)=\sup _{x, y}\{\min (\bar{A}(x), \bar{B}(y)) \mid x \cdot y=z\},
$$

and if $\bar{C}=\bar{A} / \bar{B}$,

$$
\bar{C}(z)=\sup _{x, y}\{\min (\bar{A}(x), \bar{B}(y)) \mid x / y=z\} .
$$

2.2.1 EXTENSION PRINCIPLE

In all cases \bar{C} is also a fuzzy number. We assume that zero does not belong to the support of \bar{B} in $\bar{C}=\bar{A} / \bar{B}$. If \bar{A} and \bar{B} are triangular (shaped) fuzzy numbers then so are $\bar{A}+\bar{B}$ and $\bar{A}-\bar{B}$, but $\bar{A} \cdot \bar{B}$ and \bar{A} / \bar{B} will be triangular (shaped) shaped fuzzy numbers.

2.2.2 INTERVAL ARITHMETIC

Let [a_{1}, b_{1}] and [a_{2}, b_{2}] be two closed, bounded, intervals of real numbers. If * denotes addition, subtraction, multiplication , or division, then $\left[a_{1}, b_{1}\right] *\left[a_{2}, b_{2}\right]=[\alpha, \beta]$ where

$$
\begin{equation*}
[\alpha, \beta]=\left\{a * b \mid a_{1} \leq a \leq b_{1}, a_{2} \leq b \leq b_{2}\right\} . \tag{2.8}
\end{equation*}
$$

If $*$ is division, we must assume that zero does not belong to $\left[a_{2}, b_{2}\right]$. We may simplify equation (2.8) as follows:

2.2.2 INTERVAL ARITHMETIC

$$
\begin{aligned}
{\left[a_{1}, b_{1}\right]+\left[a_{2}, b_{2}\right] } & =\left[a_{1}+a_{2}, b_{1}+b_{2}\right], \\
{\left[a_{1}, b_{1}\right]-\left[a_{2}, b_{2}\right] } & =\left[a_{1}-b_{2}, b_{1}-a_{2}\right], \\
{\left[a_{1}, b_{1}\right] /\left[a_{2}, b_{2}\right] } & =\left[a_{1}, b_{1}\right] \cdot\left[\frac{1}{b_{2}}, \frac{1}{a_{2}}\right], \\
{\left[a_{1}, b_{1}\right] \cdot\left[a_{2}, b_{2}\right] } & =[\alpha, \beta],
\end{aligned}
$$

2.2.2 INTERVAL ARITHMETIC

where

$$
\begin{aligned}
\alpha & =\min \left\{a_{1} a_{2}, a_{1} b_{2}, b_{1} a_{2}, b_{1} b_{2}\right\} \\
\beta & =\max \left\{a_{1} a_{2}, a_{1} b_{2}, b_{1} a_{2}, b_{1} b_{2}\right\}
\end{aligned}
$$

2.2.3 FUZZY ARITHMETIC

Again we have two fuzzy numbers \bar{A} and \bar{B}. We know α-cuts are closed, bounded, intervals so let $\bar{A}[\alpha]=\left[a_{1}(\alpha), a_{2}(\alpha)\right], \bar{B}[\alpha]=\left[b_{1}(\alpha), b_{2}(\alpha)\right]$. Then if $\bar{C}=\bar{A}+\bar{B}$ we have

$$
\bar{C}[\alpha]=\bar{A}[\alpha]+\bar{B}[\alpha] .
$$

We add the intervals using equation (2.9). Setting $\bar{C}=\bar{A}-\bar{B}$ we get

$$
\bar{C}[\alpha]=\bar{A}[\alpha]-\bar{B}[\alpha],
$$

for all α in $[0,1]$. Also

$$
\bar{C}[\alpha]=\bar{A}[\alpha] \cdot \bar{B}[\alpha],
$$

for $\bar{C}=\bar{A} \cdot \bar{B}$ and

$$
\bar{C}[\alpha]=\bar{A}[\alpha] / \bar{B}[\alpha],
$$

when $\bar{C}=\bar{A} / \bar{B}$, provided that zero does not belong to $\bar{B}[\alpha]$ for all α.

2.2.3 FUZZY ARITHMETIC

EXAMPLE :

Let $\bar{A}=(-3 /-2 /-1)$ and $\bar{B}=(4 / 5 / 6)$. We determine $\bar{A} \cdot \bar{B}$ using α-cuts and interval arithmetic. We compute $\bar{A}[\alpha]=[-3+\alpha,-1-\alpha]$ and $\bar{B}[\alpha]=$ $[4+\alpha, 6-\alpha]$. So, if $\bar{C}=\bar{A} \cdot \bar{B}$ we obtain $\bar{C}[\alpha]=[(\alpha-3)(6-\alpha),(-1-\alpha)(4+\alpha)]$, $0 \leq \alpha \leq 1$. The graph of \bar{C} is shown in Figure 2.3.

Figure 2.3: The Fuzzy Number $\bar{C}=\bar{A} \cdot \bar{B}$

