Fuzzy Statistics

Dr. Mohammed Jasim Mohammed

Estimate µ, Variance Known

Chapter 4

2019 آب 2019

Dr.Mohammed Jasim

4.1 Fuzzy Estimator of μ

Consider X a random variable with probability density function $N(\mu, \sigma^2)$, which is the normal probability density with unknown mean μ and unknown variance σ^2 . To estimate μ we obtain a random sample $X_1, X_2, ..., X_n$ from $N(\mu, \sigma^2)$. Suppose the mean of this random sample turns out to

be \bar{x} , which is a crisp number, not a fuzzy number.

4.1 Fuzzy Estimator of μ

Also, let S^2 be the sample variance. Our point estimator of μ , is \bar{x} . If the values of the random sample are X_1, X_2, \dots, X_n then the expression we will use for S^2 is:

$$s^{2} = \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} / (n-1)$$

We will use this form of S^2 , with denominator (n -1), so that it is an unbiased estimator of σ^2 .

4.1 Fuzzy Estimator of µ

It is known that $\frac{(\bar{x} - \mu)}{(s/\sqrt{n})}$ has a (Student's) t distribution with (n – 1) degrees of freedom. It follows that.

$$P(-t_{\beta/2} \le \frac{\overline{x} - \mu}{s/\sqrt{n}} \le t_{\beta/2}) = 1 - \beta$$

where $t_{\beta/2}$'s defined from the (Student's) t distribution, with n - 1 degrees of freedom, so that the probability of exceeding it is $\beta/2$. Now solve the inequality for μ , giving

5

4.1 Fuzzy Estimator of μ

Now solve the inequality for μ , giving

$$P(\overline{x} - t_{\beta/2}s/\sqrt{n} \le \mu \le \overline{x} + t_{\beta/2}s/\sqrt{n}) = 1 - \beta.$$

For this we immediately obtain the $(1 - \beta)\%100$ confidence interval for μ ,

$$[\overline{x} - t_{\beta/2}s/\sqrt{n}, \overline{x} + t_{\beta/2}s/\sqrt{n}].$$

Put these confidence intervals together, we obtain fl our fuzzy number estimator of μ .

Example 4.1.1

Consider X a random variable with probability density function $N(\mu, \sigma^2)$, which is the normal probability density with unknown mean μ and unknown variance. To estimate μ we obtain a random sample X_1, X_2, \ldots, X_n from N(μ, σ^2). Suppose the mean of this random sample of size 25 turns out to be 28.6 and S^2 =3.42. Then a $(1 - \beta)\%100$ confidence interval for μ is $[28.6 - t_{\beta/2}\sqrt{3.42/25}, 28.6 + t_{\beta/2}\sqrt{3.42/25}]$

To obtain a graph of fuzzy μ , or $\overline{\mu}$, first assume that $0.01 \le \beta \le 1$. We will use MATLAB to create the Graph of function.

Example 4.1.1

Figure 4.2: Fuzzy Estimator $\overline{\mu}$ in Example 4.1.1, $0.10 \le \beta \le 1$

Dr.Mohammed Jasim

Example 4.1.1 >> x=linspace(26,30); >> y=linspace(0.01,1); >> f1=28.6-0.3699*icdf('T',(1-y/2),24); >> f2=28.6+ 0.3699 *icdf('T',(1-y/2),24); >> plot(f1,y,f2,y)>> ylabel ('alpha') >> xlabel('mean')

Example 4.1.1

Dr.Mohammed Jasim