Fuzzy Statistics

Dr. Mohammed Jasim Mohammed

Estimate μ, Variance Known

Chapter 4

4.1 Fuzzy Estimator of μ

Consider X a random variable with probability density function $N\left(\mu, \sigma^{2}\right)$, which is the normal probability density with unknown mean μ and unknown variance σ^{2}. To estimate μ we obtain a random sample X_{1}, X_{2}, \ldots, X_{n} from $N\left(\mu, \sigma^{2}\right)$.
Suppose the mean of this random sample turns out to be \bar{x}, which is a crisp number, not a fuzzy number.

4.1 Fuzzy Estimator of μ

Also, let S^{2} be the sample variance. Our point estimator of μ, is \bar{x}. If the values of the random sample are $X_{1}, X_{2}, \ldots, X_{n}$ then the expression we will use for S^{2} is:

$$
s^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} /(n-1)
$$

We will use this form of S^{2}, with denominator ($\mathrm{n}-1$), so that it is an unbiased estimator of σ^{2}.

4.1 Fuzzy Estimator of μ

It is known that $\frac{(\bar{x}-\mu)}{(s / \sqrt{n})}$ has a (Student's) t distribution with ($n-1$) degrees of freedom. It follows that.

$$
P\left(-t_{\beta / 2} \leq \frac{\bar{x}-\mu}{s / \sqrt{n}} \leq t_{\beta / 2}\right)=1-\beta
$$

where $t_{\beta / 2}$ s defined from the (Student's) t distribution, with $\mathrm{n}-1$ degrees of freedom, so that the probability of exceeding it is $\beta / 2$. Now solve the inequality for μ, giving

4.1 Fuzzy Estimator of μ

Now solve the inequality for μ, giving

$$
P\left(\bar{x}-t_{\beta / 2} s / \sqrt{n} \leq \mu \leq \bar{x}+t_{\beta / 2} s / \sqrt{n}\right)=1-\beta .
$$

For this we immediately obtain the $(1-\beta) \% 100$ confidence interval for μ,

$$
\left[\bar{x}-t_{\beta / 2} s / \sqrt{n}, \bar{x}+t_{\beta / 2} s / \sqrt{n}\right] .
$$

Put these confidence intervals together, we obtain fl our fuzzy number estimator of μ.

Example 4.1.1

Consider X a random variable with probability density function $N\left(\mu, \sigma^{2}\right)$, which is the normal probability density with unknown mean μ and unknown variance. To estimate μ we obtain a random sample $X_{1}, X_{2}, \ldots, X_{n}$ from $\mathrm{N}\left(\mu, \sigma^{2}\right)$. Suppose the mean of this random sample of size 25 turns out to be 28.6 and $S^{2}=3.42$. Then a $(1-\beta) \% 100$ confidence interval for μ is

$$
\left[28.6-t_{\beta / 2} \sqrt{3.42 / 25}, 28.6+t_{\beta / 2} \sqrt{3.42 / 25}\right]
$$

To obtain a graph of fuzzy μ, or $\bar{\mu}$, first assume that $0.01 \leq \beta$ ≤ 1. We will use MATLAB to create the Graph of function.

Example 4.1.1

Figure 4.2: Fuzzy Estimator $\bar{\mu}$ in Example 4.1.1, $0.10 \leq \beta \leq 1$

Example 4.1.1

>> x=linspace $(26,30)$;
>> y=linspace(0.01,1);
>> f1=28.6-0.3699*icdf('T',(1-y/2),24);
>> f2=28.6+ 0.3699 *icdf('T',(1-y/2),24);
>> plot(f1,y,f2,y)
>> ylabel ('alpha')
>> xlabel('mean')

Example 4.1.1

