Fuzzy Statistics

Dr. Mohammed Jasim Mohammed

Estimate p, Binomial Population

Chapter 5

5.1 Fuzzy Estimator of p

We have an experiment in mind in which we are interested in only two possible outcomes labeled "success" and "failure". Let \boldsymbol{p} be the probability of a success so that $\boldsymbol{q}=\mathbf{1} \boldsymbol{-} \boldsymbol{p}$ will be the probability of a failure. We want to estimate the value of \boldsymbol{p}. let we have a random sample which here is running the experiment n independent times and counting the number of times we had a success.

5.1 Fuzzy Estimator of p

Let x be the number of times we observed a success in n independent repetitions of this experiment. Then our point estimate of p is: $\hat{p}=\frac{x}{n}$
We know that $\frac{(\hat{p}-\mathrm{p})}{\sqrt{p(1-\mathrm{p}) / n}}$ is approximately $N(0,1)$ if n is sufficiently large. Then

$$
P\left(z_{\beta / 2} \leq \frac{\widehat{p}-p}{\sqrt{p(1-p) / n}} \leq z_{\beta / 2}\right) \approx 1-\beta
$$

5.1 Fuzzy Estimator of p

where $z_{-}(\beta / 2)$ is defined as:

$$
\int_{-\infty}^{z_{\beta / 2}} N(0,1) d x=1-\beta / 2
$$

Solving the inequality for the \boldsymbol{p} in the numerator we have $P\left(\hat{p}-z_{\beta / 2} \sqrt{p(1-p) / n} \leq p \leq \hat{p}+z_{\beta / 2} \sqrt{p(1-p) / n} \approx 1-\beta\right.$. This leads directly to the $(1-\beta) \% 100$ confidence interval for \boldsymbol{p}.

$$
\left[\hat{p}-z_{\beta / 2} \sqrt{p(1-p) / n}, \widehat{p}+z_{\beta / 2} \sqrt{p(1-p) / n}\right]
$$

5.1 Fuzzy Estimator of p

 However, we have no value for p to use in this confidence interval. So, still assuming that n is sufficiently large, we substitute \hat{p} for p in the equation using $\hat{q}=1-\hat{p}$, and we get the final $(1-\beta) \% 100$ approximate confidence interval$$
\left[\widehat{p}-z_{\beta / 2} \sqrt{\widehat{p} \widehat{q} / n}, \widehat{p}+z_{\beta / 2} \sqrt{\widehat{p} \hat{q} / n}\right]
$$

Put these confidence intervals together we get \hat{p} our triangular shaped fuzzy number estimator of p.

Example 5.1.1

Assume that $\mathrm{n}=350, \mathrm{x}=180$ so that $p=0.5143$. The confidence intervals become.

$$
\left[0.5143-0.0267 z_{\beta / 2}, 0.5143+0.0267 z_{\beta / 2}\right]
$$

To obtain a graph of fuzzy p, or \bar{p}, first assume that $0.01 \leq \beta \leq 1$.

Example 5.1.1

>> x=linspace(0,1);
>> $y=$ linspace(0.1,1);
>> f1=0.5143-0.0267*icdf('Normal',(1-y/2));
>> f2=0.5143+0.0267*icdf('Normal',(1-y/2));
>> plot(f1,y,f2,y)
>> ylabel ('alpha')
>> xlabel('x')

Example 5.1.1

Figure 5.3: Fuzzy Estimator \bar{p} in Example 5.1.1, $0.01 \leq \beta \leq 1$

Example 5.1.1

Figure 5.2: Fuzzy Estimator \bar{p} in Example 5.1.1, $0.10 \leq \beta \leq 1$

