Fuzzy Statistics

Dr. Mohammed Jasim Mohammed

Estimate σ^2 from a Normal Population

Chapter 6

Consider X a random variable with probability density function $N(\mu, \sigma^2)$, which is the normal probability density with unknown mean μ and unknown variance σ^2 . To estimate σ^2 we obtain a random sample X_1, X_2, \ldots, X_n from $N(\mu, \sigma^2)$. Our point estimator for the variance will be S^2 • If the

values of the random sample are $x_1, x_2, ..., x_n$ then the expression we will use for S^2 is

6.2 Biased Fuzzy Estimator $s^{2} = \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} / (n - 1)$

i=1

We will use this form of S^2 , with denominator (n -1), so that it is an unbiased estimator of σ^2 . We know that $(n - 1)S^2/\sigma^2$ has a chi-square distribution with n - 1 degrees of freedom. Then

$$P(\chi^2_{L,\beta/2} \le (n-1)s^2/\sigma^2 \le \chi^2_{R,\beta/2}) = 1 - \beta_2$$

where $\chi^2_{R,\beta/2}$ ($\chi^2_{L,\beta/2}$) is the point on the right (left) side of the density where x^2 the probability of exceeding (being less than) it is $\beta/2$. The χ^2 distribution has n - 1 degrees of freedom. Solve the inequality for σ^2 and we see that

$$P(\frac{(n-1)s^2}{\chi^2_{R,\beta/2}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{L,\beta/2}}) = 1 - \beta.$$

From this we obtain the usual $(1-\beta)\%100$ confidence intervals for $\sigma^2 [(n-1)s^2/\chi^2_{R,\beta/2}, (n-1)s^2/\chi^2_{L,\beta/2}]$

Put these confidence intervals together, as discussed in Chapter 3, and we obtain $\bar{\sigma}^2$ our fuzzy number estimator of σ^2 . We now show that this fuzzy estimator is biased because the vertex of the triangular shaped fuzzy number $\bar{\sigma}^2$,

where the membership value equals one, is not at S^2 • We say a fuzzy estimator is biased when its vertex is not at the point estimator. We obtain the vertex of $\bar{\sigma}^2$ when ($\beta = 1.0$) Let

$$factor = \frac{n-1}{\chi^2_{R,0.50}} = \frac{n-1}{\chi^2_{L,0.50}},$$

after we substitute $\beta = 1$ Then the 0% confidence interval for the variance $[(factor)(s^2), (factor)(s^2)] = (factor)(s^2)$ Since $factor \neq 1$ the fuzzy number $\overline{\sigma}^2$ is not centered at S^2 .

n	factor
10	1.0788
20	1.0361
50	1.0138
100	1.0068
500	1.0013
1000	1.0007

Table 6.1: Values of factor for Various Values of n

Table 1 shows some values of factor for various choices for n. We see that $factor \rightarrow 1 as n \rightarrow \infty$ but factor is substantially larger than one for small values on *n*. This fuzzy estimator is biased.

6.3 Unbiased Fuzzy Estimator

In deriving the usual confidence interval for the variance we start with recognizing that $(n-1)S^2/\sigma^2$ has a x^2 distribution with n -1 degrees of freedom. Then for a $(1-\beta)\%100$ confidence interval we may find *a* and *b* so that

$$p\left(a \le \frac{(n-1)S^2}{\sigma^2} \le b\right) = 1 - \beta$$

The usual confidence interval has *a* and *b* so that the probabilities in the "two tails" are equal.

6.3 Unbiased Fuzzy Estimator

That is, $a = \chi^2_{L,\beta/2}$ $(b = \chi^2_{R,\beta/2})$ that the probability of being less (greater) than a (b) is $\beta/2$. Assume that $0.01 \le \beta \le 1$. Now this interval for β is fixed and also n and S^2 are fixed. Define $L(\lambda) = [1 - \lambda]\chi^2_{R,0.005} + \lambda(n - 1)$ $R(\lambda) = [1 - \lambda]\chi^2_{L,0.005} + \lambda(n - 1)$ Then a confidence interval for the variance is

 $\left[\frac{(n-1)s^2}{L(\lambda)}, \frac{(n-1)s^2}{R(\lambda)}\right]$

6.3 Unbiased Fuzzy Estimator

For $0 \le \lambda \le 1$. start with a 99% confidence interval when $\gamma = 0$ and end up with a 0% confidence interval for $\gamma = 1$ Our confidence interval for σ , the population standard deviation, is

$$\left[\sqrt{(n-1)/L(\lambda)}s,\sqrt{(n-1)/R(\lambda)}s\right]$$

Example 6.3.1

Consider X a random variable with probability density function $N(\mu, \sigma^2)$, which is the normal probability density with unknown mean μ and unknown variance σ^2 . To estimate σ^2 we obtain a random sample $X_1, X_2, ..., X_n$ from $N(\mu, \sigma^2)$. the random sample of size 25 and $S^2 = 3.42$. Then a $(1 - \beta)\%100$ confidence interval for σ^2 is $[\frac{82.08}{L(\lambda)}, \frac{82.08}{R(\lambda)}]$.

To obtain a graph of fuzzy σ^2 , or $\overline{\sigma}^2$, first assume that $0.01 \le \beta \le 1$. We will use MATLAB to create the Graph of function.

Example 6.3.1

20 آب 2019

Dr.Mohammed Jasim

```
Example 3.3.1
 x=linspace(0,1);
 y=linspace(0.01,1);
 X2L= chi2inv(.995,24);
 X2R = chi2inv(.005,24);
f1=(1-y)^* X2L + y^*24;
f2=(1-y)^* X2R + y^*24;
f11=82.08./f1;
f22=82.08./f2;
 plot(f11,y,f22,y)
 ylabel ('alpha')
 xlabel('x')
```