### **Fuzzy Statistics**

Dr. Mohammed Jasim Mohammed

### Estimate $\mu_{1}$ , $\mu_{2}$

Chapter 7

21 آب 2019

Dr.Mohammed Jasim

fppt.com

2

### 7.1 Estimate µ1- µ2 ,Variance Known

We have two populations: Pop I and Pop II. Pop I is normally distributed with unknown mean  $\mu_1$  and known variance  $\sigma_1^2$ . Pop II is also normally distributed with unknown mean  $\mu_2$  but known variance  $\sigma_1^2$ . We wish to construct a fuzzy estimator for  $\mu_1 - \mu_2$ . We collect a random sample of size n<sub>1</sub> from Pop I and let  $\bar{x}_1$  be the mean for this data. We also gather a random sample of size n<sub>2</sub> from Pop II and  $\bar{x}_2$  is the mean for the second sample. We assume these two random samples are independent.

### **7.1 Estimate µ1- µ2**, Variance Known Now $\bar{x}_1 - \bar{x}_2$ is normally distributed with mean $\mu_1 - \mu_2$ and standard deviation $\sigma_0 = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$ Then as in Section 3.3 of Chapter 3, $(1 - \beta)$ %100 confidence interval for $\mu_1 - \mu_2$ , is

$$\overline{x}_1 - \overline{x}_2 - z_{\beta/2}\sigma_0, \overline{x}_1 - \overline{x}_2 + z_{\beta/2}\sigma_0$$

we place these confidence intervals one on top of another to build our fuzzy estimator  $\bar{\mu}_{12}$  for  $\mu_1 - \mu_2$ 

### Example 7.1.1

Assume that: (1)  $n_1 = 15$ ,  $\overline{x}_1 = 70.1$ ,  $\sigma_1^2 = 6$ ; and (2)  $n_2 = 8$ ,  $\overline{x}_2 = 75.3$ ,  $\sigma_2^2 = 4$ . Then equation (7.1) becomes

$$[-5.2 - 0.9487 z_{\beta/2}, -5.2 + 0.9487 z_{\beta/2}]$$



Figure 7.1: Fuzzy Estimator  $\overline{\mu}_{12}$  in Example 7.1.1,  $0.01 \leq \beta \leq 1$ 

Dr.Mohammed Jasim

# 8.1 Estimate μ1- μ2 , Variances Unknown: Large Samples

We assume that  $n_1 > 30, n_2 > 30$ . Let  $S_1^2, S_1^2$  be the sample variance calculated from the data acquired from Pop I (Pop II). With large samples we may use the normal approximation and a  $(1 - \beta)\%100$  confidence interval for  $\mu_1 - \mu_2$  is (Section 7.3 in [1]).  $\overline{x_1 - \overline{x_2} - z_{\beta/2}s_0, \overline{x_1} - \overline{x_2} + z_{\beta/2}s_0}$ 

Where  $s_0 = \sqrt{s_1^2/n_1 + s_2^2/n_2}$ . Put these confidence intervals together to obtain a fuzzy estimator  $\bar{\mu}_{12}$  for the difference of the means. The results are similar to those in Chapter 7.

# 8.2 Estimate μ1- μ2, Variances Unknown: Small Samples

Here we have two cases: (1) if we may assume that the variances are equal; or (2) the variances are not equal. We assume that  $n_1 < 30$ ,  $n_2 < 30$ . Let  $S_1^2$ ,  $S_1^2$ .

### 8.3.1 Estimate μ1- μ2, Variances Unknown: Small Samples: Equal Variances

We have  $\sigma_1^2 = \sigma_2^2 = \sigma^2 \cdot \text{Define } S_p$ , the pooled estimator of the common variance, as,

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

Let  $s_* = s_p \sqrt{1/n_1 + 1/n_2}$ . Then it is known that

$$T = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{s^*}$$

# 8.3.1 Estimate μ1- μ2, Variances Unknown: Small Samples: Equal Variances

has a (Student's) t-distribution with  $n_1 + n_2 - 2$  degrees of freedom. Then  $P(-t_{\beta/2} \le T \le t_{\beta/2}) = 1 - \beta.$ 

Solve the inequality for  $\mu_1 - \mu_2$  and we find the  $(1 - \beta)\%100$  confidence interval for  $\mu_1 - \mu_2$ .  $[\overline{x}_1 - \overline{x}_2 - t_{\beta/2}s^{*}, \overline{x}_1 - \overline{x}_2 + t_{\beta/2}s^{*}].$ We place these confidence intervals one on top of another, as

in Chapter 3, to get our fuzzy estimator  $\bar{\mu}_{12}$ .

Example 8.3.1.1

Assume that the variances in the two populations are equal. Let the data be:(1)  $n_1 = 15, \bar{x}_1 = 70.1, s_1$ = 6 and  $n_2 = 8, \bar{x}_2 = 75.3, s_2 =$  We compute  $S_p$ = 2.3094. Then  $[-5.2 - 1.0110t_{\beta/2}, -5.2 + 1.0110t_{\beta/2}]$ .

The degrees of freedom is 21. if  $0.01 \le \beta \le 1$ , then the graph of the fuzzy estimator  $\overline{\mu}_{12}$ , is in Figure 8.1.



# 8.3.2 Estimate μ1- μ2, Variances Unknown: Small Samples: Unequal Variances

We have  $\sigma_1^2 \neq \sigma_2^2$ . Define  $S_p$ , It is known that

$$T = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{s_0}.$$

is approximately (Student's) t distributed with r degrees of freedom. We find the degrees of freedom (r) by rounding up to the nearest integer the following expression

# 8.3.2 Estimate μ1- μ2, Variances Unknown: Small Samples: Unequal Variances

$$\frac{(A+B)^2}{\frac{A^2}{n_1-1} + \frac{B^2}{n_2-1}},$$

Where  $A = s_1^2/n_1$  and  $B = s_2^2/n_2$ . Let

$$T = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{s_0}.$$

Then

$$P(-t_{\beta/2} \le T \le t_{\beta/2}) \approx 1 - \beta.$$

Solve the inequality for  $\mu_1 - \mu_2$  and we find the  $(1-\beta)\%100$  confidence interval for  $\mu_1 - \mu_2$ .

# 8.3.2 Estimate μ1- μ2, Variances Unknown: Small Samples: Unequal Variances

$$[\overline{x}_1 - \overline{x}_2 - t_{\beta/2}s_0, \overline{x}_1 - \overline{x}_2 + t_{\beta/2}s_0].$$

The t distribution has r degrees of freedom. We place these confidence intervals one on top of another, as in Chapter 3, to get our fuzzy estimator  $\bar{\mu}_{12}$ .

#### Example 8.3.2.1

Let us use the same data as in Example 8.3.1.1 except now we do not assume the variances are ,the data be:(1)  $n_1 = 15, \bar{x}_1 = 70.1, s_1 = 6$  and  $n_2 = 8, \bar{x}_2 = 75.3, s_2 =$  We compute  $S_p = 2.3094$ .

An approximate  $(1 - \beta)\%100$  confidence interval for the difference of the means is

$$[-5.2 - (0.9487)t_{\beta/2}, -5.2 + (0.9487)t_{\beta/2}],$$

#### Example 8.3.2.1

The term  $S_o$  was defined in Section 8.2 and we computed it as 0.90487. Also , we determined that the degrees of freedom is r = 18.

if  $0.01 \le \beta \le 1$ , then the graph of the fuzzy estimator  $\mu$ \_12, is in Figure 8.2.



Let  $x_1, x_2, \ldots, x_n$  be the values of a random sample from a population Pop 1. Let  $object_i$  or person<sub>i</sub>, belong to Pop I which produced measurement  $x_i$  in the random sample, 1 < i < n. Then, at possibly some later time, we take a second measurement on *object*<sub>i</sub> (person<sub>i</sub>) and get value  $y_i, 1 < i < n$ . Then  $((x_1, y_1), \cdots, (x_n, y_n))$ , are n pairs of dependent measurements.

For example, when testing the effectiveness of some treatment for high blood pressure, the  $x_i$  are the blood pressure measurements before treatment and the  $y_i$  are these measurements on the same person after treatment. The two samples are not independent so we can not use the results of Chapters 7 or 8.

Let  $d_i = x_i - y_i$ , 1 < i < n. Next compute the mean  $\overline{d}$  (crisp number , not fuzzy) and the variance  $S_d^2$  of the  $d_i$  data. Assume that n > 30 so we may use the normal approximation; or assume that the  $d_i$  are approximately normally distributed with unknown mean  $\mu_d$  and unknown variance  $\sigma_d^2$ . Then

$$T = \frac{d - \mu_d}{s_d / \sqrt{n}},$$

Dr.Mohammed Jasim

has a t distribution with n - 1 degrees of freedom. It follows that:  $P(-t_{\beta/2} \le T \le t_{\beta/2}) = 1 - \beta$ . From this it immediately follows that a  $(1-\beta)\%100$  confidence interval for  $\mu_d$   $[\overline{d} - t_{\beta/2}\frac{s_d}{\sqrt{n}}, \overline{d} + t_{\beta/2}\frac{s_d}{\sqrt{n}}].$ 

Now place these confidence intervals given in above equation one on top of another to produce our fuzzy estimator  $\bar{\mu}_d$  of  $\mu_d$ .

### Example 9.1.1

Consider the paired data in the below Table. This table contains a weeks forecast high temperatures and the actual recorded high values.

| Forecast $(x)$ | Actual High $(y)$ |
|----------------|-------------------|
| 68             | 72                |
| 76             | 74                |
| 66             | 62                |
| 72             | 76                |
| 76             | 75                |
| 80             | 78                |
| 71             | 75                |

### Example 9.1.1

We compute  $d_i = x_i - y_i$ , 1 < i < 7. and then  $\overline{d} = -0.4286$ ,  $S_d = 3.4572$ . The  $(1-\beta)\%100$  confidence interval are  $[-0.4286 - (1.3067)t_{\beta/2}, -0.4286 + (1.3067)t_{\beta/2}]$ . We graphed the confidence intervals for  $0.01 \le \beta \le 1$ , and the result is our fuzzy estimator  $\overline{\mu}_d$  of  $\mu_d$  in Figure 9.1.





25 fppt.com